Product Systems of Graphs and the Toeplitz Algebras of Higher-rank Graphs

نویسنده

  • IAIN RAEBURN
چکیده

Abstract. There has recently been much interest in the C∗-algebras of directed graphs. Here we consider product systems E of directed graphs over semigroups and associated C∗-algebras C∗(E) and T C∗(E) which generalise the higher-rank graph algebras of Kumjian-Pask and their Toeplitz analogues. We study these algebras by constructing from E a product system X(E) of Hilbert bimodules, and applying recent results of Fowler about the Toeplitz algebras of such systems. Fowler’s hypotheses turn out to be very interesting graph-theoretically, and indicate new relations which will have to be added to the usual Cuntz-Krieger relations to obtain a satisfactory theory of Cuntz-Krieger algebras for product systems of graphs; our algebras C∗(E) and T C∗(E) are universal for families of partial isometries satisfying these relations. Our main result is a uniqueness theorem for T C∗(E) which has particularly interesting implications for the C∗-algebras of non-row-finite higher-rank graphs. This theorem is apparently beyond the reach of Fowler’s theory, and our proof requires a detailed analysis of the expectation onto the diagonal in T C∗(E).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying higher rank analytic Toeplitz algebras

To a higher rank directed graph (Λ, d), in the sense of Kumjian and Pask, 2000, one can associate natural noncommutative analytic Toeplitz algebras, both weakly closed and norm closed. We introduce methods for the classification of these algebras in the case of single vertex graphs.

متن کامل

Higher-rank Graph C∗-algebras: an Inverse Semigroup and Groupoid Approach

We provide inverse semigroup and groupoid models for the Toeplitz and Cuntz-Krieger algebras of finitely aligned higher-rank graphs. Using these models, we prove a uniqueness theorem for the Cuntz-Krieger algebra.

متن کامل

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

SOLVABILITY OF FREE PRODUCTS, CAYLEY GRAPHS AND COMPLEXES

In this paper, we verify the solvability of free product of finite cyclic groups with topological methods. We use Cayley graphs and Everitt methods to construct suitable 2-complexes corresponding to the presentations of groups and their commutator subgroups. In particular, using these methods, we prove that the commutator subgroup of $mathbb{Z}_{m}*mathbb{Z}_{n}$ is free of rank $(m-1)(n-1)$ fo...

متن کامل

C*-algebras of Graph Products

For certain graphs, we can associate a universal C*-algebra, which encodes the information of the graph algebraically. In this paper we examine the relationships between products of graphs and their associated C*-algebras. We present the underlying theory of associating a C*-algebra to a direct graph as well as to a higher rank graph. We then provide several isomorphisms relating C*-algebras of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008